
 

 

 

Novel Methods for Identifying and Quantifying Metabolites in 

Complex Biological Extracts by Multidimensional Nuclear 

Magnetic Resonance Spectroscopy 

 

by 

Ian A. Lewis 

 

A dissertation submitted in partial fulfillment of  

the requirements for the degree of  

 

Doctor of Philosophy 

(Biochemistry) 

 

at the  

UNIVERSITY OF WISCONSIN-MADISON 

2010



i 

 

 

 

 

 

 

 

 

 

To my fiancée Jennifer  

 

  



ii  

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS .............................................................................................................. vii 

GLOSSARY ................................................................................................................................ viii 

ABSTRACT ................................................................................................................................... x 

CHAPTER 1 

Introduction ............................................................................................................................. 1 

CHAPTER 2 

Novel NMR and MS approaches to metabolomics ................................................................. 5 

2.1. Abstract ...................................................................................................................... 6 

2.2. Bioanalytical metabolomics ........................................................................................ 6 

2.3. Sample preparation .................................................................................................... 7 

2.3.1 Methods for minimizing technical error ............................................................... 8 

2.3.2 Protocol for extracting high-abundance aqueous metabolites ......................... 13 

2.4. Resources for NMR- and MS-based metabolomics ................................................. 14 

2.4.1. Databases and bioinformatics ......................................................................... 17 

2.4.2. Software for NMR data analysis ...................................................................... 22 

2.5. Mass spectrometry methods for identifying and quantifying metabolites ................. 23 

2.6. NMR methods for identifying and quantifying metabolites ....................................... 31 

2.6.1. Mathematical and statistical methods ............................................................. 31 

2.6.2. Multidimensional NMR methods ...................................................................... 32 

Protocol for metabolite identification .................................................................... 35 

Metabolite Quantification Protocol ....................................................................... 39 

2.6.3. Selective NMR methods .................................................................................. 44 

2.7. Future prospects ...................................................................................................... 46 



iii  

 

CHAPTER 3 

New Bioinformatics Resources for Metabolomics ................................................................. 47 

3.1. Abstract .................................................................................................................... 48 

3.2. Introduction .............................................................................................................. 48 

3.3. Metabolite Database at the BMRB ........................................................................... 49 

3.4. Madison Metabolomics Consortium Database (MMCD) .......................................... 53 

CHAPTER 4 

Method for Determining Molar Concentrations of Metabolites in 

Complex Solutions from Two-Dimensional 1H-13C NMR Spectra ......................................... 61 

4.1. Abstract .................................................................................................................... 62 

4.2. Introduction .............................................................................................................. 62 

4.3. Materials and Methods ............................................................................................. 67 

4.4. Protocol for FMQ by NMR ........................................................................................ 72 

4.5. Results ..................................................................................................................... 75 

4.6. Discussion ................................................................................................................ 81 

CHAPTER 5 

rNMR: open source software for identifying and quantifying 

metabolites in NMR spectra .................................................................................................. 82 

5.1. Abstract .................................................................................................................... 83 

5.2. Introduction .............................................................................................................. 83 

5.3. Results and Discussion ............................................................................................ 86 

5.4. Conclutions .............................................................................................................. 91 

 

 



iv 

 

CHAPTER 6 

Method for Determining Carbon-13 Isotopic Enrichment of Metabolites 

in Complex Solutions ............................................................................................................ 92 

6.1 Abstract ..................................................................................................................... 93 

6.2. Introduction .............................................................................................................. 93 

6.3. Materials and Methods ............................................................................................. 95 

6.4. Results ................................................................................................................... 102 

6.5. Discussion .............................................................................................................. 112 

CHAPTER 7 

Method for Controlling Differential T1 Relaxation in NMR Analyses of 

Metabolites in Complex Solutions ....................................................................................... 113 

7.1. Abstract .................................................................................................................. 114 

7.2. Results and Discussion .......................................................................................... 114 

CHAPTER 8 

Role of Band 3 in regulating metabolic flux of red blood cells ............................................. 123 

8.1. Abstract .................................................................................................................. 124 

8.2. Introduction ............................................................................................................ 125 

8.3. Results ................................................................................................................... 127 

8.4. Discussion .............................................................................................................. 137 

8.5. Materials and Methods ........................................................................................... 140 

 

 

 

 



v 

 

CHAPTER 9 

Role of Band 3 in regulating metabolic flux of reticulocytes ................................................ 147 

9.1. Abstract .................................................................................................................. 148 

9.2. Introduction ............................................................................................................ 148 

9.3. Materials and Methods ........................................................................................... 150 

9.4. Results ................................................................................................................... 156 

9.5. Discussion .............................................................................................................. 163 

CHAPTER 10 

Glutathione synthesis via aminotransferases in human erythrocytes ................................. 165 

10.1. Abstract ................................................................................................................ 166 

10.2. Introduction .......................................................................................................... 166 

10.3. Materials and Methods ......................................................................................... 168 

10.4. Results ................................................................................................................. 171 

10.5. Discussion ............................................................................................................ 181 

CHAPTER 11 

Concluding remarks ............................................................................................................ 184 

APPENDIX I .............................................................................................................................. 186 

Metabolic analysis of Arabidopsis thaliana histidine kinase mutants .................................. 186 

A.I.1. Analysis of oil content in seeds ............................................................................ 187 

A.I.2. Time-dependent alterations of metabolites in vegetative tissues ........................ 190 

A.I.3. Metabolic profiles in vegetative tissue of ATHK1 mutants ................................... 193 

 

 

 



vi 

 

APPENDIX II ............................................................................................................................. 198 

Extraction Contraption: device for isolating metabolites from tissues ................................. 198 

A.II.1. Abstract ............................................................................................................... 199 

A.II.2. Introduction ......................................................................................................... 199 

A.II.3. Overall design ..................................................................................................... 200 

A.II.4. Milling chamber ................................................................................................... 202 

A.II.5. Vibrational Shaker .............................................................................................. 206 

A.II.6. Solvent reservoir ................................................................................................. 209 

A.II.7. Homogenization platform .................................................................................... 209 

A.II.8. Filtration Chamber .............................................................................................. 209 

A.II.9. Filtration platform ................................................................................................ 212 

BIBLIOGRAPHY ....................................................................................................................... 213 

  



vii  

 

ACKNOWLEDGMENTS 

I have received considerable help in conducting the research presented here. I would like to 

acknowledge my mentor, Dr. John L. Markley, who has been a great source of support 

throughout my studies; I am indebted to Dr. Markley for the many opportunities I have been 

given to present my research at national meetings, collaborate with interesting scientists, and 

pursue my interests in technology development and erythrocyte metabolism. I would also like to 

thank Dr. Philip S. Low and M. Estela Campanella (Purdue University) for hosting me and 

overseeing the red blood cell metabolism investigations. I thank the members of the NMRFAM 

staff, particularly Dr. William M. Westler, Dr. Marco Tonelli, and Dr. Gabriel Cornilescu, for 

teaching me the theoretical and practical aspects of NMR spectroscopy. I also thank Team 

Metabolon, the collection of graduate students, undergraduate research interns, and staff 

members who have contributed to my research. Team Metabolon alumni include: Jesse Q 

Bond, Qiu Cui, James Ellinger, Nick Gallagher, In Kyu Han, Seung Pyo ñDannyò Han, Michael 

Ho, Brendan Hodis, Dan Miller, Mark Norton, Ryan Karsten, Clint Morgan, Kate Robb, Sam 

Schmidt, Seth Schommer, Yody Shlaffen, Eric Swanson, Yuet Tse ñGordonò Fai, and Zhaoyu 

ñMichaelò Wang. This work was supported by NIH grants P41 RR02301, R21 DK070297, and 

GM24417. All NMR data were collected at the National Magnetic Resonance Facility at Madison 

(NMRFAM) funded by NIH grants P41 RR02301 and P41 GM GM66326. I was also supported 

by a fellowship from the Genomics Sciences Training Program funded by NHGRI grant 

1T32HG002760.  

 

 

  



viii  

 

GLOSSARY 

1D: one-dimensional  

2,3-BPG: 2,3-Bisphosphoglycerate 

2D: two-dimensional 

Bioanalytical Metabolomics: comprehensive quantitative analysis of metabolites in complex 

biological samples  

BMRB: BioMagResBank, a repository of NMR data of metabolites collected under standardized 

conditions 

D2O: deuterium oxide, a solvent that is frequently used for NMR-based analysis of aqueous 

extracts  

DETOCS: Difference Edited Total Correlation Spectroscopy, a homonuclear 1H NMR pulse 

program that separates signals from 13C- and 12C-bound protons into distinct spectra  

DSS: (4,4-dimethyl-4-silapentane-1-sulfonic acid), a compound used to reference chemical 

shifts in NMR spectra  

EDTA: ethylenediaminetetraacetate, a chelator that binds to Fe(III) with high affinity 

FMQ by NMR: fast metabolite quantification by nuclear magnetic resonance spectroscopy, a 

method for quantifying metabolites in NMR spectra and strategy for shortening the 

acquisition times of multidimensional experiments  

GE: glycolytic enzymes 

HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, an organic buffer that is used as 

an internal pH reference in NMR-based bioanalytical metabolomics 
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HMDB: Human Metabolome Database, a repository of MS and NMR data and bioinformatics 

tools related to human metabolism  

HSQC: Heteronuclear Single Quantum Coherence, a heteronuclear NMR pulse program that is 

frequently used for acquiring 2D 1H-13C NMR spectra of metabolites 

MES: 2-(N-morpholino)ethanesulfonic acid, an organic buffer that is used as an internal 

concentration reference for NMR-based bioanalytical metabolomics  

Metabolomics: The study of metabolites in complex biological extracts 

MMC: Madison Metabolomics Consortium, a collection of University of Wisconsin laboratories 

that contributed to the metabolite standards libraries used by the BMRB and MMCD  

MMCD: Madison Metabolomics Consortium Database, a bioinformatics tool for identifying 

metabolites in MS and NMR spectra 

MS: mass spectrometry  

NMR: nuclear magnetic resonance spectroscopy 

PPP: pentose phosphate pathway  

RBC: red blood cell 

rNMR: an open source software package for NMR data analysis 

ROI: region of interest, a subsection of an NMR spectrum 

TOCSY: Total Correlation Spectroscopy, a homonuclear NMR pulse program that is frequently 

used for collecting 2D 1H-1H NMR data of metabolites 

 

  



x 

 

Novel Methods for Identifying and Quantifying Metabolites in Complex Biological 

Extracts by Multidimensional Nuclear Magnetic Resonance Spectroscopy 

 

Ian A. Lewis 

Under the supervision of Professor John L. Markley 
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Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools 

available for identifying and quantifying metabolites in simple mixtures. However, NMRôs 

analytical utility is largely negated by signal overlap, which is inherent to NMR spectra of 

complex biological extracts. Consequently, NMR-based metabolomics studies are rarely able to 

identify the individual components of mixtures. Over the past ten years, roughly 1,000 articles 

have been published on NMR-based metabolomics. These studies generally rely on multivariate 

statistics for deciphering the overlapped spectra. I have developed an alternative strategy, 

bioanalytical metabolomics, which capitalizes on state-of-the-art multidimensional NMR to 

minimize resonance overlap. The bioanalytical metabolomics strategy allows up to 90% of the 

NMR observable metabolites to be identified and accurately quantified. Moreover, this approach 

allows hypothesis-driven research to be conducted on larger scale than was previously 

possible. In this thesis, I present the tools and techniques that I have developed for solving 

practical problems associated with the new technology and provide examples of hypothesis-

driven research conducted with the bioanalytical metabolomics strategy. 
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Introduction 
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Metabolomics is the study of metabolites in complex biological extracts. Metabolomics 

differs from traditional bioanalytical chemistry and natural products chemistry in scope; 

metabolomics encompass all observable metabolites whereas traditional methods target a 

predefined subset compounds. Metabolomics is generally used for biomarker discovery, 

classifying samples, and other hypothesis-independent studies. Although the word 

ñmetabolomicsò, and its synonym ñmetabonomicsò, are relatively new (Nicholson, Lindon et al. 

1999; Fiehn, Kopka et al. 2000), the concept these words represent has been in active use 

since the early 1970ôs (Pauling, Robinson et al. 1971).  

Nuclear magnetic resonance (NMR) spectroscopy is a popular analytical tool for 

metabolomics. NMR is desirable because it provides an unbiased window into the composition 

of mixtures; the intensities of NMR signals are linearly proportional to concentration, NMR can 

detect almost any soluble organic compound present at sufficient concentrations, NMR can 

determine the molecular structures of compounds, and it can differentiate between isomers. 

Until recently, however, technological limitations have prevented metabolomics studies from 

fully capitalizing on these inherent strengths of NMR. 

NMR spectra of complex biological extracts contain hundreds to thousands of signals. 

These signals are distributed over a finite bandwidth that is dictated by the design of the NMR 

pulse program and the physical properties of the nuclei detected in the experiment. In one 

dimensional (1D) 1H NMR spectra, the most popular experiment for NMR-based metabolomics, 

metabolite signals are confined to a narrow bandwidth (~10 ppm). As a result, the majority of 

signals overlap with resonances from other compounds. Overlapping NMR signals are difficult 

to assign and are quantitatively unreliable (Lewis, Schommer et al. 2007). Consequently, most 

metabolomics studies do not attempt to identify and quantify the individual components of 

extracts. 
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The established NMR-based approach for analyzing spectra relies on multivariate statistics 

for interpreting overlapped data. Principle components analysis, or any one of a variety of 

multivariate techniques (Lindon, Holmes et al. 2001), is used to generate spectral fingerprints 

associated with a particular biological condition. These multivariate signatures are useful for 

classifying unknown samples or can be analyzed directly to find spectral biomarkers for disease. 

Although the established statistics-based methods for analyzing data have proven themselves 

to be reproducible (Dumas, Maibaum et al. 2006), they provide little information on the 

molecular composition of extracts, and thus, do not benefit from NMRôs analytical strengths.  

A wide variety of multidimensional NMR pulse sequences have been developed by 

biomolecular NMR spectroscopists to mitigate problems associated with peak overlap in 

complex spectra. Multidimensional NMR is of obvious utility to metabolomics, but has been 

avoided because of serious practical challenges associated with this technique. Although two 

dimensional (2D) 1H-1H and 1H-13C NMR experiments significantly reduce the number of 

overlapped resonances, the traditional methods for interpreting 2D NMR data are labor 

intensive, time consuming, and require considerable NMR expertise (Lewis, Schommer et al. 

2009). Furthermore, the intensities of multidimensional NMR signals are affected by a wide 

range of factors unrelated to the concentrations of molecules (Lewis, Schommer et al. 2007; 

Lewis, Karsten et al. 2010; Lewis, Shortreed et al. 2010). The difficulty in assigning and 

quantifying multidimensional NMR data has made this technique essentially inaccessible to the 

metabolomics community.  

The goal of my Ph.D. research was to develop a practical multidimensional NMR strategy for 

identifying and quantifying metabolites in complex biological extracts. In collaboration with 

various members of the Madison Metabolomics Consortium (MMC), I (1) helped develop an 

extensive collection of NMR spectra of metabolites (Markley, Anderson et al. 2007), (2) 

participated in the creation of a bioinformatics tool for identifying metabolites (Cui, Lewis et al. 
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2008), (3) devised a general method for measuring molar concentrations of molecules by 

multidimensional NMR (Lewis, Schommer et al. 2007), (4) wrote a NMR data analysis software 

package (Lewis, Schommer et al. 2009), (5) developed an NMR pulse sequence and analytical 

strategy for quantifying metabolites on the basis of isotopic enrichment (Lewis, Karsten et al. 

2010), (6) devised a simple method for standardizing differential T1 relaxation of NMR signals 

(Lewis, Karsten et al. 2010), and (7) invented a device for extracting metabolites from biological 

tissues (Appendix II).  

These tools have dramatically simplified comprehensive metabolic analyses and allow 

metabolomics to capitalize on state-of-the-art NMR technology. Moreover, these tools have 

been integrated sufficiently to make comprehensive metabolic analysis a feasible alternative to 

the statistics-based metabolomics (Lewis, Shortreed et al. 2010). This comprehensive 

approach, which I refer to as bioanalytical metabolomics, allows hypothesis-driven research to 

be conducted in the context of metabolomics.  

This thesis is a compilation of publications that document the most successful tools and 

techniques I developed over the course of my PhD research. For each chapter, I have provided 

a brief description of the role I played and the significance of the research in the context of 

bioanalytical metabolomics. I have also included three studies that I conducted on erythrocyte 

metabolic regulation (Chapters 8-10). These studies serve as examples of hypothesis-driven 

research conducted using the bioanalytical metabolomics strategy.  
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CHAPTER 2 

Novel NMR and MS approaches to metabolomics 

 

Adapted from: 

Ian A. Lewis, Michael R. Shortreed, Adrian D. Hegeman and John L. Markley. Novel NMR 

and MS approaches to metabolomics. Handbook of Metabolomics (in press) 

 

This chapter provides an overview of my up-to-date protocols, most firmly established 

analytical tools, and my current thinking on modern bioanalytical metabolomics. I originally 

wrote this section as a practical guide to the numerous technological advances of recent years. 

With the exception of the MS section, which was contributed by Dr. Shortreed and Dr. 

Hegeman, the material presented here was derived from my own research. Several sections in 

this chapter overlap with material from Chapters 3-5, I have included the overlapping material 

here because it is presented in a more general context and because some of my methods have 

evolved since their original publication.  
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2.1. Abstract 

Identifying and quantifying metabolites in complex biological samples is one of the most 

challenging aspects of metabolomics. Recently, several important advances in databases, 

software, instrumentation, and laboratory techniques have greatly simplified the most laborious 

tasks of metabolite identification and have made quantification more reliable. These 

technological advances have made bioanalytically-oriented studies a feasible alternative to the 

statistics-based methods commonly used for metabolomics. We discuss the tools that have 

become most important in our own research and comment on emerging technologies that may 

play an important role in future studies. In addition, we provide practical guidelines for designing 

studies and give the step-by-step protocols used in our lab for sample preparation, metabolite 

identification, and accurate quantification of molecules. 

2.2. Bioanalytical metabolomics 

All metabolomics studies involve elements of natural products chemistry, analytical 

chemistry, and statistics. The degree to which each of these elements is weighted influences 

experimental design and the type of data that is ultimately derived from a study. Currently, most 

metabolomics investigations emphasize statistics. Spectroscopic data derived from these 

studies are deciphered by using sophisticated multivariate tools, and potential biomarkers are 

identified on the basis of their statistical significance (Lindon, Holmes et al. 2007). Although 

multivariate analyses are effective for classifying samples, they do not provide a transparent 

mechanism for identifying and quantifying individual metabolites.  

Bioanalytical metabolomics is an emerging strategy that emphasizes comprehensive 

metabolite assignment, accurate measures of concentration, and transparent data analyses that 

minimize the use of statistics. Although these characteristics are similar to traditional 

metabolism research (Radda and Seeley 1979; Shulman, Brown et al. 1979), bioanalytical 
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metabolomics differs from traditional studies in scope. Unfractionated biological samples contain 

hundreds (NMR) to thousands (MS) of observable signals. Whereas traditional methods restrict 

analyses to a few pre-determined metabolites, bioanalytical metabolomics attempts to identify 

and quantify all of the observable signals. Until recently, this type of comprehensive metabolite 

profiling was too labor intensive to be practical in routine analyses. However, the tools and 

techniques discussed in this chapter have dramatically simplified the laborious aspects of data 

analysis and have made bioanalytical metabolomics a practical alternative to statistics-based 

studies.  

2.3. Sample preparation  

Consistent sample preparation is an important component of bioanalytical metabolomics. 

Although a wide variety of techniques are effective, no protocol is appropriate for all metabolites. 

Extraction conditions, such as solvent temperature and hydrophobicity, directly affect the 

molecules that can be identified and quantified in a study. Aqueous solvents extract hydrophilic 

molecules; non-polar solvents extract hydrophobic metabolites; harsh conditions (acids, bases 

and boiling) promote unwanted chemistry at labile functional groups; gentle conditions (cold 

methanol-water) are less effective for denaturing proteins. In short, every procedure alters oneôs 

perception of in vivo metabolism. The goal is to find a reproducible method that preserves the 

metabolites relevant to a particular study. In this section, we present some general guidelines 

for minimizing technical error and provide the sample preparation protocol we use for routine 

NMR-based metabolomics studies of aqueous metabolites.  

 



8 

 

2.3.1 Methods for minimizing technical error  

Metabolite concentrations observed in tissue extracts and biological fluids can vary 

considerably across a dataset. These sample-to-sample differences originate from both natural 

variability and technical error. Whereas biological variance is essential for interpreting metabolic 

differences between samples, technical error is simply an obstacle to meaningful data analysis. 

Although there are many sources of error in metabolomics studies, the main contributors are 

inconsistent sample preparation and technical shortcomings in analytical equipment (e.g. 

resonance overlap, ion suppression, and imprecision in peak picking). Careful experimental 

design can control these sources of error.  

Extraction solution conditions. Variation in the amount biological material used to prepare 

each sample is one of the primary sources of technical error in metabolomics. Inconsistency at 

this level is directly proportional to quantitative error in the final analysis. Sample-to-sample 

differences also affect solution conditions (osmolarity, pH, etc.) of the extraction buffer and 

analytical medium. These second-order effects alter the extraction efficiencies of sparingly 

soluble compounds and complicate data analysis. 

A direct method for controlling variation in sample size is to aliquot tissues on the basis of 

mass. This approach is most effective in studies involving large sample sizes and becomes 

increasingly error-prone as sample size diminishes. Animal tissues can be weighed directly on 

an analytical balance whereas plant samples generally require prior lyophilization to standardize 

water content. An alternative strategy, which is appropriate for cell cultures, is to prepare 

samples with uniform optical density and aliquot samples on the basis of volume. We have 

found this method to be less consistent, but considerably more convenient, than centrifuging cell 

suspensions and aliquoting samples on the basis of mass.  
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The volume of solvent present in the extraction medium can also contribute to technical 

error, particularly in extractions involving volatile organic solvents or high temperatures. Solvent 

loss due to evaporation can be minimized by using sealed reaction vials. We have found 22 mL 

screw-top vessels to be convenient for parallel extractions; they allow 16 or more samples to be 

incubated, centrifuged, filtered and lyophilized simultaneously with conventional laboratory 

instrumentation.  

Preparation of analytical solutions. Solution conditions in the analytical medium are 

another major contributor to technical error. Salinity, pH, and the concentrations of metal ions 

affect the sensitivity of NMR spectrometers and the efficacy bioinformatics-based resonance 

assignments. The strategy for standardizing these conditions is analogous to the methods used 

for standardizing extractions; samples need to be prepared with a consistent solute to solvent 

ratio.  

The most reliable method for ensuring consistent analytical conditions is to analyze raw 

extracts without any additional sample preparation. Unfortunately, metabolites present in 

unconcentrated extracts are generally too dilute for NMR analyses. Furthermore, extractions 

typically employ 1H-containing solvents, which are another potential source of error in NMR 

analyses (e.g. spectral overlap, radiation damping, and receiver overflow resulting from 

incomplete solvent suppression). Consequently, NMR-based studies often prepare analytical 

solutions from dried extracts dissolved at relatively high concentrations in perdeuterated 

solvents. Though necessary, this strategy introduces some additional complications into sample 

preparation and data analysis.  

We employ two strategies for preparing dried extracts: 1) dissolving all samples in a fixed 

volume of solvent and 2) preparing solutions on a mass to volume basis. Of the two 

approaches, the fixed volume method is preferable, because it requires the least amount of 
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sample handling. In studies involving easily standardized extractions, the fixed volume approach 

yields technical error of less than 5% in our hands. The alternative mass-to-volume approach is 

appropriate for studies involving large samples (>40 mg extract) with major sample-to-sample 

differences in salinity. In these cases, we prepare analytical solutions from dried extracts 

dissolved in 8-17 ɛL of perdeuterated solvent per mg of sample.  

Titrating pH in analytical solutions. Rigorous pH control is an essential component of 

bioanalytical metabolomics. All of the existing tools for bioinformatics-based metabolite 

identification and resonance assignment require samples to match the solution conditions used 

in the public databases (Cui, Lewis et al. 2008). Minor deviations in pH (0.01) alter NMR 

chemical shifts and pH-dependent exchange broadening alters the intensities of metabolites 

that are near their pKa. These effects can have a significant impact on the amount of time 

required to assign spectra and the reliability of quantitative analyses.  

In our experience, simply adding a buffer to the analytical medium (up to 25 mM HEPES) is 

insufficient for controlling pH to the degree required for automated resonance assignment. Each 

sample must be hand titrated using a pH meter equipped with a small electrode. We adjust 

sample pH using concentrated acid or base (~1 M DCl or ~1M NaOD) to minimize titration-

related volume changes. For a trained technician, titrating 400 ɛL sample to 7.400 ° 0.004 

requires about three minutes. Although titration is tedious, it saves considerable time overall 

because it allows labor-intensive data analysis to be replaced with automated resonance 

assignments.  

Internal standards. The use of internal standards is one of the simplest means of ensuring 

data quality. Although highly reproducible data can be collected without an internal standard, 

small changes in NMR line shape, sample dilution, and salt concentration affect the intensities 

of NMR signals. Standards control for these variables and allow biologically relevant variation to 
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be distinguished from technical error. Furthermore, clever use of internal standards allows one 

to calculate metabolite concentrations relative to the amount of starting material.  

Our strategy is to extract 400 mg of dry weight tissue in 16 mL of water containing 167 ɛM of 

an internal standard. This approach allows us to relate metabolite concentrations observed in 

the NMR tube to the dry weight of the tissue. We typically use HEPES or MES as an internal 

standard because these compounds have multiple peaks that are well isolated from biological 

resonances in 2D 1H-13C NMR spectra. HEPES is convenient because it acts as an internal pH 

indicator (Fig. 2.1), but MES is probably a better concentration reference because of its lower 

pKa. Neither of these compounds would be suitable for 1D 1H or 2D homonuclear 1H 

experiments because their resonances overlap with those of many biological compounds.  

 

 

Figure 2.1. The 1H chemical shifts of several HEPES peaks are pH sensitive and can be used 

as in internal pH reference. The titration curve was generated from a HEPES buffered saline 

solution (290 milliosmol) in D2O. The dotted lines indicate the observed pKa of HEPES as an 

uncorrected meter reading in D2O. 
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Although we have only applied the internal standard normalization strategy to aqueous 

extractions, the principle should be applicable to other types of extractions. In some cases, 

biological internal standards may already be present in the data. Plants grown in MES buffer, for 

example, accumulate MES proportionally to their dry mass (Fan, Lane et al. 2001; Lewis, 

Schommer et al. 2007). Non-metabolized biological internal standards are extremely useful 

provided that their normal in vivo concentrations can be calculated.  

Entropy in sample order. Metabolite signals observed in either NMR or MS spectra can be 

influenced by the order of sample analysis. In the case of NMR data, systematic changes in 

shimming over the course of many samples results in different (usually worse) line shape. While 

these variations can, in theory, be corrected by normalization to an internal standard, data 

should always be collected in a random order to minimize systematic error. Furthermore, all 

NMR and MS data should be collected with technical replicates. Although technical replication is 

routine in the MS world, the NMR community has tended to avoid technical replication on the 

grounds that NMR yields high technical reproducibility. While NMR analysis can be made 

extremely reproducible through careful shimming, we have found that data collected with 

automated sample changers can have considerable variation in line shape. Technical replication 

and randomized sample order minimize the chance of systematic errors.  

Errors in error bars. Careful scrutiny of the various studies that have quantified the speed 

of light since 1676 indicates that the value of c appears to have changed significantly over the 

last few centuries (Brown, Pais et al. 1995). Although these results could be interpreted as an 

exciting physical phenomenon, the more realistic explanation is that the error bars given on the 

light speed estimates were too low. Misleading error estimates are not unique to measurements 

of universal constants. In a landmark 1984 paper, Stuart Hurlbert showed that about half of the 

inferential statistics published in ecology between 1960 and 1984 were based on questionable 

data replication (Hurlbert 1984). This problem also applies to metabolomics. Confusing technical 
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replicates with biological replicates grossly misrepresents real biological variation and will 

inevitably lead to erroneous interpretations of statistical tests. Biologically meaningful 

investigations require careful experimental design with respect to replication. Although 

Hurlbertôs paper was written for ecology, his recommendations for experimental design are 

directly applicable to the design of metabolomics experiments. Mehta and coworkers have also 

published a review on this topic that addresses the problems encountered in high-throughput 

studies (Mehta, Tanik et al. 2004).  

2.3.2 Protocol for extracting high-abundance aqueous metabolites  

The majority of research topics encountered in our laboratory involve studies of highly 

abundant water-soluble metabolites. The protocol presented here is a general method for 

preparing samples that is suited to NMR-based assays of amino acids, sugars, polyamines, 

polyols, and other thermally stable molecules found at high abundance in tissue extracts. We 

prefer this protocol because it is easy to parallelize, produces low technical error with relatively 

high yields, and results in a similar complement of NMR-observable metabolites from a wide 

variety of samples (Lewis, Schommer et al. 2007). The disadvantages of the protocol include its 

specificity to hydrophilic molecules and poor recovery of thermally unstable compounds (e.g. 

ATP, and other phosphorylated intermediates). However, many of the highly abundant 

metabolites found in tissue extracts are thermally stable and suitable to this preparation method. 

Of the amino acids we have observed, only glutamine (which undergoes thermal conversion to 

pyroglutamate) is significantly degraded. 

1) Cryogenically homogenize tissue in a ball mill or mortar and pestle. 

2) Lyophilize homogenized samples for 24 hours. 

3) Aliquot 400 mg dry weight tissue samples into 22 mL screw-top reaction vessels. 
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4) Add 16 mL of boiling ddH2O containing 167 ɛM HEPES or MES. HEPES or MES is used 

as an internal concentration reference and will have a final concentration of 1 to 5 mM in 

the final NMR analysis solution (depending on the volume of D2O used). 

5) Suspend sealed sample vials in a boiling water bath for 7.5 minutes. 

6) Cool samples on ice for 10 minutes, then centrifuge reaction vials in a swing bucket 

centrifuge for 30 minutes at 1,000 x g. 

7) Harvest supernatant and pressure filter the mixture through glass wool to remove any 

remaining particulate matter. 

8) Microfilter the metabolite extract with a 3 kDa molecular weight cutoff spin concentrator 

to remove soluble proteins. Microfilters must be thoroughly washed prior to this step to 

remove glycerol from the membrane surface. We wash 25 mL spin concentrators by 

running 100 mL of water through the filters prior to use; even this amount of washing 

leaves detectable levels of glycerol in the final sample. 

9) Lyophilize the metabolite filtrates to a dry powder. 

10) Dissolve dried metabolite powder in a fixed volume of NMR solvent (D20 containing 500 

ɛM DSS and 500 ɛM NaN3). We use 800 ɛl for most tissues, but this volume is 

dependent the salinity of the tissue. The object with this step is to concentrate samples 

as much as possible without leaving a precipitate or generating excessively high salt 

concentrations (which will be evident from long 90º NMR pulse lengths). All samples 

related to a study must be prepared using the same volume of solvent.  

11)  Titrate samples with concentrated acid or base (~1 M DCl or ~1M NaOD) to a pH of 

7.400 +/- 0.004. 

2.4. Resources for NMR- and MS-based metabolomics 

Traditional methods for identifying and quantifying molecules rely on visual inspection of 

data and hand assignment of signals. Although this approach is effective when applied to simple 
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mixtures, it is too labor intensive to be practical for comprehensive analysis of complex 

biological extracts. Modern bioanalytical metabolomics relies on bioinformatics, databases of 

metabolite standards, and specialty software, to make comprehensive analyses a more 

tractable challenge. Recent developments in these tools have dramatically improved the 

efficiency and reliability of analyses and have made bioanalytical metabolomics an increasingly 

popular research strategy. In this section, we focus on the tools we have found most effective in 

our own research; a more complete listing of useful resources can be found in Table 2.1.  
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Table 2.1. List of freely accessible metabolomics resources 

Standards Initiative:  

Metabolomics Standards Initiative (http://msi-workgroups.sourceforge.net/)  

Small molecule databases:  

ChemIDplus (http://chem.sis.nlm.nih.gov/chemidplus)  

Human Metabolome Database (www.hmdb.ca) 

Madison Metabolomics Consortium Database (http://mmcd.nmrfam.wisc.edu) 

Metlin (http://metlin.scripps.edu)  

PubChem (http://pubchem.ncbi.nlm.nih.gov) 

Metabolic pathway databases:  

BioCyc (www.biocyc.org)  

ExPASy (www.expasy.ch/cgi-bin/search-biochem-index)  

KEGG (www.genome.jp/kegg)  

Reactome (www.reactome.org)  

TAIR (www.arabidopsis.org)  

UM-BBD (http://umbbd.msi.umn.edu)  

Laboratory Information Management Systems (LIMS):  

Sesame LIMS (www.sesame.wisc.edu) 

SetupX (http://fiehnlab.ucdavis.edu/projects/binbase_setupx)  

NMR and MS databases:  

BioMagResBank (BMRB) (www.bmrb.wisc.edu) 

Human Metabolome Database (www.hmdb.ca) 

Madison Metabolomics Consortium Database (http://mmcd.nmrfam.wisc.edu) 

Mass Spectrometry Database Committee (www.ualberta.ca/~gjones/mslib.htm) 

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry) 

NMR metabolomics database of Linkoping (http://www.liu.se/hu/mdl/main)  

NMRShiftDB (http://www.nmrshiftdb.org) 

NMR Data Analysis software: 

MetaboMiner (http://wishart.biology.ualberta.ca/metabominer/) 

rNMR (http://rnmr.nmrfam.wisc.edu/) 
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2.4.1. Databases and bioinformatics 

For NMR-based studies, one of the most important advances in recent years has been the 

introduction of three libraries of experimental data collected on pure metabolite standards. 

Although several commercial and public NMR libraries have been in existence for years, the 

previous databases were either not curated, contained data collected under a variety of 

conditions (Steinbeck, Krause et al. 2003), or were not focused on biologically relevant 

molecules (Sadtler 1967). Furthermore, all of the earlier resources were restricted to 1D NMR 

data. In the last few years, the Madison Metabolomics Consortium (MMC), the Human 

Metabolome Project (HMP), and Bruker have expended considerable resources on collecting 

NMR data of standard compounds. These libraries are distinct from their predecessors in that 

they were collected under defined conditions, include a wide variety of NMR experiments and, in 

the case of the MMC and HMP data, are freely available. Between the MMC and HMP, spectra 

of about 1,000 metabolites are freely available over the web. These data have made it possible 

to replace many of the time consuming steps of metabolite identification and resonance 

assignment with bioinformatics and have paved the way for quantitative NMR-based 

metabolomics. 

For MS-based researchers, the state of experimentally derived data libraries is more 

complicated. GC-MS researchers enjoy a high degree of standardization with respect to 

commercial instruments, instrumental settings, retention time reporting, and mass 

fragmentation. As a result, several large, high-quality, libraries (e.g. NIST Standard Reference 

Database) are available as well as specialized metabolomics libraries (e.g. BinBase from Oliver 

Fiehnôs laboratory). LC-MS has yet to achieve the same level of standardization enjoyed by GC-

MS. As a result, experimental libraries of LC-MS-observed retention times, exact masses, and 

fragmentation patterns are of more limited use. None the less, the HMP has made a 
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considerable effort in standardizing data collection and reporting of LC-MS data and has 

collected spectra of about 2,000 metabolites. 

BioMagResBank (BMRB). The BMRB has served the NMR community for many years as 

the world repository of NMR data related to proteins and nucleic acids (Seavey, Farr et al. 1991; 

Doreleijers, Mading et al. 2003). Recently, the BMRB expanded its archives to include spectra 

of small molecules collected under standardized conditions (Markley, Anderson et al. 2007; 

Ulrich, Akutsu et al. 2008). The defining characteristics of the BMRB for metabolomics are as 

follows: the data are freely available, data entries are curated, all of the solvent and NMR 

spectral parameters are clearly defined, and the raw spectral data (in addition to peak-picked 

and processed spectra) can be downloaded. Having the raw spectral data at hand is important 

because it allows spectra of standards to be overlaid over extracts for hand verification of 

metabolite assignments.  

Currently, the BMRB contains more than 5000 NMR spectra of 800 metabolites collected by 

the Madison Metabolomics Consortium (MMC).1 These data were tailored to tissue-based 

metabolomics analyses in the design of their solvent conditions (D2O, pH 7.400 ° 0.004, 50 mM 

NaPO4 for water soluble metabolites; CDCl3 for organic soluble metabolites) and have shown to 

be useful for identifying metabolites in complex 1H-13C NMR spectra of a variety of extracts 

(Lewis, Schommer et al. 2007). Although all of the data currently available from BMRB have 

been contributed by the MMC, the BMRB and Human Metabolome Project (HMP) are working 

toward incorporating the extensive HMP archives into the BMRB. 

The BMRB offers several bioinformatics tools to enhance its function as a data repository. In 

contrast to the tools offered by the HMDB and MMCD, which are best suited to broader queries 

of the metabolite literature, the BMRB tools are primarily designed to make all of the archived 

                                                 
1 Data collection efforts are ongoing; these numbers are current as of March 2010. 
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data easily accessible. An NMR peak query provides a rapid means of locating standards. 

Similarly, MS tools allow researchers to translate exact masses into molecular formulae or 

locate records on the basis of monoisotopic masses. In summary, the BMRB provides an 

extensive collection of freely available, high-quality NMR data coupled with an efficient query 

system. The BMRB database is available over the web at www.bmrb.wisc.edu.  

Human Metabolome Database (HMDB). The human metabolome database was officially 

launched in January, 2007, and currently holds the honorable distinction of being the worldôs 

largest repository of NMR and MS data collected under standardized conditions relevant to 

metabolomics (Wishart, Tzur et al. 2007). As the name implies, the Human Metabolome 

Projectôs main focus is human metabolism. To this end, the Canadian group has amassed a 

prodigious database related to the biological significance, metabolic pathways, and physical 

properties of metabolites found in humans. The centerpiece of the HMDB is their collection of 

experimentally acquired MS and NMR data. Although there is approximately 30% overlap 

between the data collected by the MMC and HMP, the datasets were collected with different 

purposes in mind. The HMDBôs main focus is biological fluids whereas the MMCD is aimed at 

analysis of tissue extracts. These different foci provide flexibility to the metabolomics community 

with respect to experimental design. 

The HMDB offers a number of browsing and bioinformatics tools for accessing their data 

and searching the literature. One of the most useful HMDB features is their ómetabocardô, a 

single web page containing approximately 90 data fields summarizing all of the HMDB 

information related a particular compound. This feature provides an efficient mechanism for 

learning about your recently identified metabolites. Similar to the MMCD, the HMDB provides 

direct links to other databases containing information relevant to a metabolite of interest. The 

links lead to a multitude of other resources specific to the metabolite in question. Although the 

HMDB also offers several bioinformatics tools for querying the database with experimental MS 
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or NMR data, we have found the main advantage of the database to be in browsing the 

metabolomics literature. The HMDB is unquestionably the most powerful resource available to 

the metabolomics community for this purpose. The HMDB is available over the web at 

http://www.hmdb.ca. 

Madison Metabolomics Consortium Database (MMCD). The MMCD was initially 

developed as an in-house tool for identifying metabolites. The MMCD was released to the public 

in late 2006 as a bioinformatics resource for both MS and NMR based metabolomics (Cui, 

Lewis et al. 2008). In its first year of operation the MMCD received 91,000 visitors from around 

the globe. Public interest in the MMCD stems from its collection of 20,000 small molecules of 

biological interest gathered from electronic databases and the scientific literature. These data 

include the following: chemical formula, names and synonyms, structure, physical properties, 

NMR and MS data on pure compounds (when available), NMR chemical shifts determined by 

empirical and theoretical approaches, calculated isotopomer masses, information on the 

presence of the metabolite in different biological species, and extensive links to other 

databases.  

In contrast to the HMDB, which excels at browsing metabolite data, the main advantage of 

the MMCD is in its bioinformatics capabilities. For identifying metabolites by name, the text 

search engine has a large collection of synonyms and automatically allows for fuzzy text 

matching. Users can also enter database ID numbers from a variety of other public resources 

(e.g. KEGG and CAS). For structure-based searches, the MMCD allows queries by molecular 

formula, string representation (e.g. SMILES and INCHI) or common structure files (e.g. .mol and 

.pdb). Alternatively, the structure can be drawn directly into a molecular graphics window. Users 

can combine as many as six structural criteria in a logical fashion to further refine the searches. 
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Perhaps the most powerful attributes of the MMCD are its metabolite assignment tools. 

Users can upload experimental NMR or mass spectra for bulk queries of the database. The 

NMR-based searches compensate for differences in magnetic field strength and filter search 

results on the basis of the overall patterns in the submitted peaks. NMR-based queries average 

about 95% sensitivity and 4% false discovery when analyzing 2D 1H-13C HSQC spectra of pure 

compound mixtures (Cui, Lewis et al. 2008). Although the MMCDôs performance is diminished 

by chemical shift variation in real biological extracts, it is still one of the most effective automatic 

NMR-based metabolite identification tools in the public domain. 

For mass-based searches, the MMCD is primarily designed for identifying metabolites by 

exact mass, although the MMCD can also handle LC-MS, and MS/MS data. Users can specify 

the ionization mode, mass accuracy, carbon and nitrogen isotopic composition, and allow for 

common adducts. Experimental LC-MS and MS/MS peak lists can be uploaded directly either 

as flat text files or in JCAMP-DX format for batch queries. Although sensitivity and false 

discovery rates are harder to estimate for MS based queries, MMCD users can expect between 

one and three matches for each mono-isotopic mass entry. As with most mass based queries, 

the efficacy of the search engine is primarily dictated by the mass accuracy and the mass range 

being queried. MMCDôs main advantage for MS queries is that it allows users to restrict mass 

queries to known metabolites by using the biological filter provided under the miscellaneous 

search engine.  

We recently upgraded the MMCD server and software to match heavy user traffic and will 

continue to expand the resource as demand increases. Currently, users can expect metabolite 

assignments on 1H-13C HSQC spectra in less than two seconds per spectrum. The MMCD is 

available over the web at http://mmcd.nmrfam.wisc.edu.  
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2.4.2. Software for NMR data analysis 

Bioanalytical NMR-based metabolomics studies often require more than a thousand 

resonances assignments. Currently, this is a laborious task that is subject to human error and is 

difficult to document. Chemical shifts of many metabolites are subject to unpredictable 

variations resulting from uncontrolled differences in solution chemistry between samples. 

Consequently, resonances assigned in one spectrum cannot be transferred directly to other 

spectra. Although there are several effective software tools for identifying metabolites in 

complex NMR data (e.g. MMCD, metaboMiner, Chenomx, Bruker Amix, and BioRad KnowItAll), 

none of the existing tools were designed for assigning resonances across multiple spectra. As a 

result, every spectrum must be assigned individually. Using existing software tools, this task can 

require weeks of visual data inspection.  

To make comprehensive NMR data analysis more feasible, we developed an open source 

software (rNMR) (Lewis, Schommer et al. 2009) written for the R statistical software 

environment. rNMR operates on a fundamentally different principle from existing NMR tools; 

rather than assigning peaks, rNMR extracts user-defined regions of interest (ROIs) from 

spectra. Unlike peak lists, which are static summaries containing limited information, ROIs 

contain all of the NMR data present with a defined set of chemical shift ranges and can be 

visually inspected. rNMR displays ROIs extracted from hundreds of samples side-by-side, and 

allows users to dynamically manipulate the size and placement of ROIs while simultaneously 

visualizing all of the NMR data related to an assignment. This strategy allows thousands of 

resonances to be visually inspected in a few minutes. Moreover, rNMR allows users to correct 

assignment errors at any stage of an analysis by simply adjusting the bounds of the affected 

ROI. Because all resonance assignments are made within the context of a defined chemical 

shift range, rNMR enforces consistent resonance assignments across hundreds of samples 

while maintaining flexibility to variations in chemical shift. 
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In addition to simplifying resonance assignment procedures, rNMR also makes quantitative 

analyses more transparent. Quantitative algorithms are based directly on the ROI data 

displayed to users, and the underlying NMR data behind any data point can be examined by 

simply clicking on the appropriate ROI. Because rNMR generates quantitative data on the fly 

from raw NMR spectra and a table containing the boundaries of each ROI, any rNMR analysis 

can be replicated by other researchers. 

We initially developed rNMR as an in-house tool to solve practical problems encountered in 

our own research. Since its initial development, rNMR has expanded to include a broad range of 

peak picking, data visualization, and metabolite assignment tools that simplify data analysis. In 

addition, rNMRôs architecture and licensing (general public license version 3) give users the 

freedom to customize and redistribute the program. The rNMR program, extensive help 

documentation, instructional videos, compiled standards data from the BMRB, and example 

data sets are available free of charge from http://rnmr.nmrfam.wisc.edu. 

2.5. Mass spectrometry methods for identifying and quantifying metabolites 

Metabolomics researches fall into two categories: those who use mass spectrometry (MS), 

and those who wish that NMR had the sensitivity of MS. Although the respective advantages of 

NMR and MS are well known, it is worth mentioning that despite the clear superiority of MS with 

respect to detection limit, MS has two fundamental challenges: non-uniform ionization 

efficiencies and translating identified masses into specific metabolites.  

Direct analysis of metabolic extracts by MS has been reported (Vaidyanathan, Rowland et 

al. 2001; Aharoni, Ric de Vos et al. 2002), but MS analysis typically requires some form of 

fractionation to reduce ionization artifacts. Traditionally, this is handled by online coupling of 

liquid (LC) or gas chromatograph (GC) with the mass spectrometer. GC-MS is used extensively 

for profiling non-polar compounds and derivatives of some polar molecules (Fiehn, Kopka et al. 
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2000; Koek, Muilwijk et al. 2006). Many of the technical challenges associated with GC-MS 

based research have been resolved, but LC-MS is becoming increasingly popular for 

metabolomics analyses because of its compatibility with a wider range of biological compounds 

(Tolstikov and Fiehn 2002; Wang, Zhou et al. 2003; Dalluge, Smith et al. 2004; von Roepenack-

Lahaye, Degenkolb et al. 2004; Lafaye, Labarre et al. 2005; Wu, Mashego et al. 2005; Want, 

O'Maille et al. 2006). The topics addressed in this section cover several new LC-MS compatible 

methods that have made identifying and quantifying metabolites a more tractable problem.  

Quantification with selective isotope labeling. The analytical precision of ESI-MS is 

primarily limited by two related variables: ionization efficiency and matrix effects (Stokvis, 

Rosing et al. 2005). Ionization efficiency, or the percent of a molecular species that are 

ionizable, depends on a number of instrumental factors, molecular characteristics and solution 

conditions. Instrumental factors, particularly pressure and temperature at the ion source, are 

difficult to control and can produce significant run-to-run and day-to-day variations. Matrix 

effects, which occur when ions other than the target compound compete for charge, are also 

problematic because minor changes in the matrix can have a pronounced effect on ionization 

efficiency. Although chromatography can reduces these problems, observed peak intensities in 

metabolomics studies are inevitably influenced by factors other than metabolite concentrations 

(Roy, Anderle et al. 2004). 

One method for improving the quantitative performance of MS is to relate observed signals 

to isotopically labeled (2H, 13C, 15N, or 18O-substituted) internal standards for each of the target 

molecules. Some care should be taken with 2H labeled compounds to ensure that labels are 

limited to non-labile atoms and that the perdeuterated positions do not interact with the 

chromatographic columns (perdeuteration can lead to chromatographic shifts) (Pan, Kora et al. 

2006; Yang, Mirzaei et al. 2006). The main advantage of internal isotopic standards is that they 

co-elute with their unlabeled counterparts, and thus can be used to normalize variation in 
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ionization efficiency and matrix effects. In practice, this entails dividing peak intensities (or 

volumes) of unlabeled compounds by the intensities of the corresponding labeled standards. 

Accurate concentrations of the unlabeled compounds can then be calculated by multiplying the 

normalized signals by the known concentrations of the standards. The primary disadvantage of 

this approach is that an isotopically labeled standard is needed for every compound of interest, 

which becomes difficult in comprehensive studies because of the price (~$100/mg) and 

potential unavailability of labeled standards.  

There are several alternatives for larger scale projects in which absolute quantification can 

be replaced by relative abundance. One method involves in vivo isotopic labeling of a control 

sample using an economical substrate (e.g. E. coli grown on U-13C glucose or acetate). A fixed 

amount of the labeled mixture produced in vivo is added to each of the test samples, and the 

relative abundances of metabolites are computed by comparing the signal from labeled 

molecules to their corresponding unlabeled counterparts (Mashego, Wu et al. 2004; Birkemeyer, 

Luedemann et al. 2005; Lafaye, Labarre et al. 2005; Wu, Mashego et al. 2005). This strategy 

works well for most small free living organisms (yeast, bacteria, and tissue cultures) and is 

applicable to some whole plants. However, the approach is limited in mammals because of the 

difficulty in achieving uniform isotopic labeling and the prohibitive expense.  
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An alternative strategy for calculating relative abundances of metabolites is to use selective 

chemistry to isotopically label molecules containing a particular functional group (Fig. 2.2) (Berry 

and Murphy 2005; Regnier and Julka 2006; Shortreed, Lamos et al. 2006; Lamos, Shortreed et 

al. 2007; Yang, Adamec et al. 2007). The general strategy for the selective chemistry approach 

is similar to the in vivo approach in that an isotopically labeled control mixture is used as a 

concentration reference sample for a series of test samples. Selective chemistry-based 

quantification requires each test mixture to be derivatized in the same manner as the isotope 

labeled control. To distinguish between molecules originating from the test and control mixture, 

test samples are derivatized with unlabeled reagents (natural abundance levels of isotopes), 

whereas control mixtures are derivatized with isotopically labeled reagents. The óheavyô control 

mixtures are then mixed with ólightô test samples creating a composite mixture. When analyzed, 

the heavy and light derivatives co-elute from the LC-column and appear in the mass spectrum 

as pairs of peaks with a mass-shift equal to the difference in mass of the two isotopic labels 

(Fig. 2.3). The ratio of peak areas or intensities for each pair can then be used to compute the 

relative metabolite abundances in each of the test samples.  
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Figure 2.2. Isotopic labeling chemistry under different reaction conditions. Isotopic shifts 

resulting from differential labeling of amines with (top) methylacetimidate, where a 2 Da shift is 

produced from the two 13C atoms; (middle) formalin, where primary amines acquire two 13C 

methyl groups to produce a 2 Da shift, and (bottom) cholamine, where 2H on all three methyl 

groups produce a 9 Da shift. (Abbreviations: MeOH, methanol; TEA, triethanolamine; HBTU, 2-

(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; and DMSO, dimethyl 

sulfoxide.) 

 

Figure 2.3. Representative extracted ion chromatograms and a mass spectrum for cholamine-

labeled fatty acids. Light and heavy labeled fatty acids co-elute from reverse phase LC (left) and 

are easily distinguished by MS by their characteristic 9 Da shift (right). Amines labeled as shown 

in Fig. 2.2 yield analogous results.  
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The selective chemistry approach to quantification offers a number of advantages to the 

metabolomics community. Most importantly, it improves quantitative precision by normalizing 

variations in detection sensitivity resulting from ionization suppression (Constantopoulos, 

Jackson et al. 1999; Sterner, Johnston et al. 2000; Annesley 2003) and variability in retention 

time between runs (Pan, Kora et al. 2006). This is possible because the ólightô and óheavyô 

metabolites co-elute within a single run and therefore have identical retention times and are 

electrosprayed from identical solution conditions. A second benefit of using a derivatization 

reagent is that it can help identify a metabolite by indicating the presence of a certain functional 

group. By employing a number of labeling strategies, one can target various classes of 

compounds. Furthermore, well-designed labeling reagents can improve chromatographic 

separation, enhance detection sensitivity and yield low coefficients of variation (Shortreed, 

Lamos et al. 2006; Guo, Ji et al. 2007; Lamos, Shortreed et al. 2007; Yang, Adamec et al. 

2007). Although it is too early to judge the efficacy of this approach in metabolomics settings, 

selective chemistry promises to be a powerful, cost effective, tool in the MS metabolomics 

arsenal. 

  



29 

 

Isotope constrained formula assignments. High-resolution MS spectra of tissue extracts 

contain hundreds to thousands of peaks. Assigning identities to each of these features is far 

from trivial. Although common metabolites can be identified by GC-MS using the well developed 

commercial libraries, these libraries are of little use for novel compounds. Furthermore, existing 

LC-MS/MS literature (primarily from the HMDB) is of limited utility because of the large platform-

dependent variability present in LC-MS systems. Currently, LC-MS analysis and novel 

compound identification require more extensive analytical techniques than those used for GC-

MS.  

One analytical strategy that can be used for identifying metabolites is to calculate elemental 

compositions of mass peaks obtained from high accuracy mass measurements. This approach 

is only feasible for compounds of low molecular weight and requires very high mass accuracy 

estimates, such as those obtained via FT-ICR MS. Unique molecular formula assignments of 

compounds less than 250 amu typically require a mass accuracy of 3 ppm. As mass increases, 

or mass accuracy decreases, the number of matching formulas balloons exponentially.  

Computational and experimental constraints can be used to reduce the number of possible 

formulas for higher molecular weight species. Both natural abundance isotopic distribution (Kind 

and Fiehn 2006) and heuristically derived limits on elemental composition space (Kind and 

Fiehn 2007) are effective means of constraining molecular assignments. A more experimental 

approach is to create mixtures of uniformly substituted isotopomers and measure the mass shift 

associated with isotopic labeling (Rodgers, Blumer et al. 2000). For example, a spectrum can be 

collected for a mixture of unlabeled, fully 13C labeled, and fully 15N/13C labeled versions of a 

molecule. Mass shifts observed in the spectrum of this mixture can then be used to calculate the 

number of carbon and nitrogen atoms present in a compound, and these, in turn, can be used to 

restrict the number of possible formula assignments (Hegeman, Schulte et al. 2007). Such 
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empirically determined constraints greatly simplify molecular formula calculations and allow 

unique formula assignments to be made at much higher mass values (Fig. 2.4).  

Metabolomics applications of the isotopically constrained formula assignment method 

require uniform isotopic labeling. As mentioned previously, in vivo 15N and/or 13C isotopic 

labeling is relatively straightforward and cost effective in small free living organisms or tissue 

cultures (Beynon and Pratt 2005). However, some care should be taken to ensure that 

metabolites are uniformly labeled. Partial labeling results in excessive spectral complexity 

resulting from the various partially substituted isotopomers. We have recently added several 

computational resources to the BMRB as a tool for researchers who are interested in using 

isotope constrained assignments (Hegeman, Schulte et al. 2007). 

 

 

 

Figure 2.4. Number of calculated formulae with and without nitrogen and carbon constraints for 

4,918 unique formulae derived from the BMRB database assuming mass accuracy of ±3 ppm.  
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2.6. NMR methods for identifying and quantifying metabolites 

Although NMR is a relatively insensitive technique when compared to MS, NMR-based 

analyses enjoy several advantages over MS. Specifically, NMR peak intensities scale 

proportionally with concentration, NMR is sensitive to a wide variety of metabolite structures, 

and NMR analyses requires little to no sample preparation. Although NMR has become a 

popular tool for statistics-based metabolomics, NMR-based bioanalytical studies are relatively 

rare because of practical challenges in data analysis. However, the bioinformatics and software 

tools discussed in section 3 have largely eliminated these practical constraints. 

In this section, we discuss several alternative strategies for collecting quantitatively reliable 

NMR data that can be used for bioanalytical metabolomics. A unifying theme of the techniques 

presented here is that they provide a mechanism for separating overlapped NMR signals. 

Overlapped signals, such as those found in 1D 1H spectra of biological extracts, scale 

proportionally to the total overlapped spectral density and can neither be assigned nor 

quantified (Lewis, Schommer et al. 2007). Although 1D 1H NMR is a reproducible chemometrics 

tool (Dumas, Maibaum et al. 2006), bioanalytical studies require well-defined spin systems for 

resonance assignments and isolated peaks for quantification (Lewis, Schommer et al. 2007). 

Currently, there are three general strategies for producing the sufficiently sparse spectra 

required for quantitative studies: mathematical deconvolution of spectra, multidimensional NMR, 

and selective pulse sequences.  

2.6.1. Mathematical and statistical methods 

As a rule, signals correlate very well with themselves. Not surprisingly, various peaks from 

the same compound are highly covariant across multiple spectra. The Nicholson laboratory 

recognized this several years ago and formalized the use of covariance matrices to group 

resonances of various compounds (Holmes, Cloarec et al. 2006). This approach has the 
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advantage of allowing investigators to use 1D 1H NMR spectra, the fastest and most sensitive 

NMR experiment, and still provide a mechanism for dispersing resonances from individual 

compounds. However, the covariance approach does not provide a mechanism for 

quantification. As a result, quantitative estimates of peaks identified through covariance are still 

rooted in the dubious metric of overlapped 1D 1H signals. 

An alternative approach developed by Weljie and coworkers is to fit overlapped signals with 

modeled peaks and base quantitative estimates on the modeled data (Weljie, Newton et al. 

2006). Resonance deconvolution has been used for decades in a wide variety of traditional 

NMR studies and is a well established method for separating overlapped peaks. The curve 

fitting method introduced by Welje et al. is probably the most reliable approach for quantifying 

metabolites from overlapped 1D 1H NMR data and has become the preferred strategy for many 

bioanalytically-oriented researchers. However, resonance deconvolution is a finicky hand-

manipulated process whose performance is affected by the skill of the person operating the 

software. A commercial implementation of Weljeôs method, Chenomx, removes some of this 

uncertainty. However, Chenomx is dependent upon matching metabolites with one of the 

standards present in their commercial library, and thus can be ineffective for some compounds. 

In addition, Chenomx is expensive and only supports 1D NMR analyses. Despite these 

disadvantages, resonance deconvolution is a viable method for deriving quantitative information 

from overlapped NMR spectra and may be an attractive alternative to researchers who are 

constrained to using 1D NMR. 

2.6.2. Multidimensional NMR methods 

One of the most effective methods for mitigating problems associated with resonance 

overlap is to use one of the myriad of multidimensional NMR experiments that have been 

developed by bimolecular NMR spectroscopists. In contrast to other methods for separating 
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overlapped resonances discussed here, multidimensional NMR has the significant advantage of 

contributing empirically-determined structural information about the observed resonances. This 

is of no small consequence to bioanalytical metabolomics studies, which must differentiate 

between many structurally similar metabolites. 

Several groups have applied multidimensional NMR to metabolomics (Fan 1996; Fan, Lane 

et al. 2001; Viant 2003; Kikuchi, Shinozaki et al. 2004), but practical challenges have made this 

technique unpopular for routine studies. 2D pulse sequences require longer acquisition times, 

are less quantitatively robust, are prone to data artifacts, and require more NMR expertise than 

traditional 1D spectroscopy. In this section, we provide guidelines for mitigating these problems 

and discuss the trade-offs of various multidimensional NMR strategies.  

Resolution versus sensitivity. Two categories of 2D NMR have proven effective in 

metabolomics: 1H-1H homonuclear and 1H-13C heteronuclear experiments. These categories 

have several inherent tradeoffs that must be considered in the experimental design phase of 

any bioanalytical metabolomics study. Homonuclear proton experiments are more sensitive 

because of the 100% natural abundance of 1H and its favorable magnetogyric ratio. However, 

metabolite signals in 1H-1H experiments occupy a narrow bandwidth (roughly 10 ppm), and most 

1H-1H pulse sequences produce multiple signals from each resonance (i.e. symmetrical cross-

peaks, and diagonal peaks). The low bandwidth and signal redundancy result in resonance 

overlap problems. In contrast, 1H-13C sequences offer superior separation of metabolite signals 

because of carbonôs larger bandwidth (roughly 180 ppm) and because most 1H-13C pulse 

sequences produce fewer signals per metabolite. Although modern 1H-detected 13C 

experiments are significantly more sensitive than the traditional direct detection methods used in 

1D-13C experiments, the low natural abundance of carbon (1.1%) limits metabolite investigation 

in unlabeled samples. The lower sensitivity of 1H-13C experiments can be partially mitigated by 

concentrating NMR samples (we prepare samples at up to 10 ³ higher concentrations than 
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found in vivo) or by isotopically enriching samples. However, sample limitation and biological 

constraints often make concentration or isotopic enrichment unfeasible. As a result, many NMR-

based studies must either choose high sensitivity experiments at the cost of increased spectral 

overlap, or better signal separation at the cost of lower sensitivity. The correct choice is 

governed by the biological goals of a study, the amount of material that can be obtained, the 

concentrations of target metabolites, and the complexity of the mixture being investigated.  

Additional practical considerations may influence the decision between 2D homonuclear 1H 

and heteronuclear 1H-13C experiments. Studies involving 2D 1H-1H experiments require 

considerably longer NMR acquisition times to adequately resolve metabolite signals. In addition, 

chemical shift variations are more problematic in 1H-1H spectra because 1H shifts are more 

affected by solution conditions than 13C shifts. Consequently, bioinformatics-based assignments 

of 1H-1H data are less reliable, and metabolite identifications are more ambiguous. On the other 

hand, 1H-13C analyses at natural abundance 13C levels requires 40 mg of metabolites per NMR 

sample (roughly 400 mg starting material). If sufficient starting material can be obtained for a 

single representative sample, then we recommend using 1H-13C analysis of a concentrated 

sample for metabolite identification purposes. These assignments can then be transferred to 1H-

1H data for analyses of more dilute test samples. For investigators who are new to 2D NMR, we 

recommend learning the metabolite identification and quantification process using a biological 

model that allows all samples to be analyzed via 1H-13C HSQC (heteronuclear single quantum 

coherence) or HMQC (heteronuclear multiple quantum coherence). This recommendation is 

based on the relative ease of assigning and quantifying 1H-13C data. 

Metabolite identification. The introduction of the BMRB, MMCD and HMDB databases 

have dramatically reduced the length of time required to assign NMR spectra. These resources 

allow researchers to submit peak lists from experimental data and return a list of possible 

metabolite identifications. Currently, the results of these queries must be verified by overlaying 
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spectra of standards (available from www.bmrb.wisc.edu) onto a representative extract. Step-

by-step instructions for validating resonance assignments are given below. Although our 

methods may be adapted to some 1D NMR applications, the procedures described here 

primarily refers to the analysis of 2D 1H-13C or 1H-1H NMR spectra. As mentioned above, we 

have found that 2D 1H-13C HSQC data are easier to assign than 1H-1H experiments and 

recommend that new investigators learn the assignment process with 1H-13C data.  

Protocol for metabolite identification 

1) Collect a high-resolution sensitivity enhanced 1H-13C HSQC spectrum (e.g. Varian pulse 

sequence gHSQC) of a representative sample. This will likely require 512-2048 increments 

in the indirect dimension, four scans, and as long an acquisition time as the decoupling 

strategy allows. The goal of the initial spectrum is to produce one high-quality, unambiguous 

dataset with minimal peak overlap to be used for metabolite identification purposes. It is 

virtually impossible to resolve all of the signals, but most aliphatic signals are dispersed in 

1028 indirect increments. It is important to match the sampleôs solvent conditions to those 

used by either the MMC or HMDB because bioinformatics-based assignments require 

predictable peak locations.  

2) After a high quality spectrum has been collected, process the data with the minimum 

appropriate window function (excessive line broadening will mask J-coupling), reference the 

chemical shifts, peak-pick the data, and submit the peak list to the MMCD, HMDB, or BMRB. 

Accurate chemical shift referencing is critical for bioinformatics-based assignments. 

3) Bring the experimental data into rNMR (Lewis, Schommer et al. 2009) for analysis (rNMR 

supports conversions of data in Bruker, Varian, or NMRpipe formats to the Sparky format 

used by rNMR) and download spectra of the possible matches from either the HMDB or 

BMRB. We have converted most of the BMRB 1H-13C HSQC and 1H-1H TOCSY standards 



36 

 

to Sparky format, and these data can be downloaded in bulk from 

http://rnmr.nmrfam.wisc.edu.  

4) Overlay the spectra of each potential metabolite onto your high resolution spectrum of the 

representative extract. Reliable metabolite assignments must have all of the correct 1H and 

13C chemical shifts, correct peak multiplicities, and intense peaks should show long-range 

1H-13C coupling consistent with the standard (Fig. 2.5). Some tolerance can be given for 

chemical shift variation (+/- ~0.025 ppm), provided that all of the other criteria are fulfilled. A 

few resonances are more variable than others. Specifically, malate, citrate, and a number of 

aromatic resonances can have considerable variation despite careful pH titration. 

Ambiguous metabolite assignments can be checked by adding pure standards to the 

extract; correct assignments will show increases in peak intensity proportional to the amount 

of standard added. Important assignments (i.e. those that are shown to have significant 

changes between groups) should be validated by an independent analytical technique.  

 

 

 

Figure 2.5. Two-dimensional 1H-13C HSQC NMR spectrum of sucrose from the BMRB (red) 

overlaid onto an aqueous whole-plant extract from A. thaliana (blue). Black boxes indicate long-

range proton carbon couplings used to validate the assignment. 
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Calculating molar concentrations from 2D NMR spectra. Multidimensional pulse 

sequences have significant quantitative problems resulting from off-resonance effects, 

incomplete resonance transfer, complex relaxation pathways, decoupling artifacts and mixing 

times. These variables make peak intensities (and volumes) an unreliable metric for 

quantification (Fig. 2.6). Several laboratories are developing more quantitatively reliable 

versions of common bimolecular NMR pulse sequences (Heikkinen, Toikka et al. 2003; Koskela, 

Kilpelainen et al. 2005; Peterson and Loening 2007). Unfortunately, these efforts have yet to 

produce experiments that are sufficiently robust for bioanalytical metabolomics. However, we 

have developed a practical approach to metabolite quantification that allows researchers to use 

any NMR pulse sequence. The basic feature of our method is that we do not control 

quantification through pulse sequence design. Instead, we relate observed peak intensities to 

those of mixtures of pure standards of known concentration. Differences in relaxation rates and 

shimming are controlled by normalizing observed metabolite signals to an internal standard. The 

metabolite quantification strategy described here, and the fast data collection method described 

in the next section, are the components of our fast metabolite quantification (FMQ by NMR) 

approach, which is the basis of all of our laboratoryôs routine metabolomics work.  
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Figure 2.6. Off-resonance effects are one of the many factors that can influence peak 

intensities observed in NMR experiments. In this example, the intensities in 1H-1H TOCSY were 

measured as a function of 1H frequency offset. The peak intensity is highest when the peak is 

closest to the transmitter frequency and lowers as the transmitter is tuned to higher or lower 

frequencies.  
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Metabolite Quantification Protocol 

1) Identify all metabolites present in an extract (see Protocol for metabolite identification). 

2) Prepare three mixtures containing all of the identified metabolites at 2, 5 and 10 mM. 

Although standardized metabolite intensities are linear well beyond the range of these 

standards (+/- 20 fold), the concentrations of standards should be adjusted to match the 

approximate range of expected concentrations. Mixtures should be prepared at high 

volume to minimize weighing errors. All standards and extracts should be titrated to pH 

7.400 ° 0.004.  

3) Include 5 mM of an internal standard in all of the standards mixtures and extracts to serve 

as an internal concentration reference. For 1H-13C NMR studies, we recommend HEPES 

or MES because both compounds have multiple isolated peaks that do not overlap with 

biological compounds. HEPES is convenient because it acts as an internal pH indicator, 

but MES is probably a more reliable concentration reference because of its lower pKa.  

4) Collect spectra of extracts and concentration reference samples under identical NMR 

acquisition conditions at the same time using the same instrument. Every sample, 

including the concentration reference samples, should be collected twice to produce two 

technical replicates for each sample. The sample order should be randomized. Each test 

sample should have at least three (preferably many more) independent biological 

replicates. From a statistical perspective, it is much better to have many independent 

biological replicates than to analyze many metabolites (large alpha corrections, such as 

Bonferroni correction, must be made in studies that use multiple comparisons).  

5) Measure the peak intensities (area for 1D, peak height for 2D) of non-overlapped peaks 

from extracts and the concentration reference samples. Although peak area is a robust 

metric in 1D NMR, we have found 2D peak volumes to be considerably less reliable than 

peak heights when used in this procedure (regardless of the NMR analysis software). 
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6) Normalize signals observed in each spectrum to the average signal of the dispersed 

HEPES (MES) peaks. Raw intensities can be used without normalization, but any 

variations in salt concentration (or paramagnetic relaxation agents) between samples will 

be erroneously interpreted as differences in metabolite concentrations. If samples and 

standards are osmotically identical, then normalization is undesirable because it 

introduces some technical error. However, many NMR probes are highly salt sensitive, 

and even the standards may show strong non-linear effects of salt. If in doubt, it is better 

to normalize to the internal standard and accept a small increase in technical error. 

7) Average normalized peak intensities across technical replicates. 

8) Regress normalized peak intensities of the standards to produce a concentration versus 

peak intensity equation for each dispersed signal.  

9) Calculate the observed concentrations for each normalized peak in the test samples using 

the equations derived from the standards samples. 

10) Average concentration estimates across all dispersed peaks from each molecule. 

 

The protocol described here produces concentration estimates with as little as 2.7% 

technical error from complex 2D NMR spectra (Lewis, Schommer et al. 2007). The main 

disadvantage of this approach is its dependence on standards, many of which are unavailable 

or are prohibitively expensive to use in the quantities required for this procedure. If the requisite 

standards can be obtained, however, then this strategy produces reliable quantitative 

information from most of the existing NMR pulse sequences. Moreover, the internal 

concentration references we use to control for differences in longitudinal (T1) relaxation, and 

other variations between samples, can be introduced early in the sample preparation process to 

relate observed signal intensities to biologically relevant concentrations. 
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Fast multidimensional experiments. Although multidimensional NMR has seen qualitative 

applications to metabolomics for many years (Fan 1996; Fan, Lane et al. 2001; Viant 2003; 

Kikuchi, Shinozaki et al. 2004), very few studies have used the technique for quantitative 

purposes. One reason for this is that multidimensional NMR spectra take longer to collect than 

1D 1H NMR spectra, although the long acquisition times of 2D experiments have been 

somewhat exaggerated in the metabolomics community. Over the years, protein NMR 

spectroscopists have developed a wealth of techniques for reducing the requisite acquisition 

times of multidimensional experiments. These techniques range from mathematical approaches 

for non-linear sampling of data (Hyberts, Heffron et al. 2007), to pulse sequences that encode 

the indirect dimensions using gradients (Shrot and Frydman 2004) and optimization of pulse 

angles (Ross, Salzmann et al. 1997). All of these techniques are applicable to metabolomics, 

but the easiest way to save time is to be judicious in setting up the NMR acquisition parameters.  

We have shown that a carefully adjusted 2D 1H-13C HSQC spectrum allows metabolites with 

concentrations over ~500 ɛM in the NMR tube (30ī40 metabolites using our sample preparation 

methods) to be quantified in about ten minutes (Lewis, Schommer et al. 2007). The secret to our 

approach is in the prior identification of compounds. As discussed above, a single high 

resolution HSQC of a representative sample can be used to identify the abundant metabolites 

present in an extract. After the metabolites have been identified and the peaks have been 

assigned, one can capitalize on the assignments by reducing the number of indirect points and 

time to the minimum required to resolve two signals from each target molecule. These time 

savings can be achieved while maintaining high quantitative precession (technical error ~3%) 

(Lewis, Schommer et al. 2007). 

The primary factor that contributes to lengthy 2D experiments is the number of increments 

collected in the indirect dimension. Time savings are proportional to the number of increments 

that can be eliminated from the acquisition. Because resolution in the indirect dimension is a 
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function of the number of increments and the indirect spectral-width, achieving adequate 

resolution in the minimal amount of time usually involves trimming both the spectral-width and 

the number of increments. If the indirect spectral-width is cut in half, then the number of indirect 

points can be halved without affecting resolution. The spectral-width can be reduced well 

beyond the point where resonances are no longer contained within the spectral window. 

Resonances with signals outside of the spectral-width will wrap back into the spectral window 

with a chemical shift that is equal to their original shift plus or minus a multiple of the spectral-

width (Fig. 2.7). In more extreme cases, resonances may be wrapped multiple times. If the 

original chemical shifts and the spectral-width are known, then a heavily wrapped spectrum can 

be unwrapped by using simple arithmetic. Spectral folding may result in undesirable overlap 

between analytically important signals, but overlap can often be alleviated with small 

adjustments of the indirect carrier frequency. As discussed above, off resonance effects play a 

major role in observed peak intensities. After acceptable settings for the spectral-width, number 

of increments, and the transmitter offset have been found, it is critical that these values be kept 

constant across all of the test samples and standards. 
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Figure 2.7. Quantitative 1H-13C HSQC NMR spectrum of a synthetic mixture of 26 metabolites. 

The spectral width in the indirect dimension was reduced to allow for shorter acquisition times. 

Blue peaks are in their correct locations, whereas red peaks have been wrapped into the top of 

the spectrum from their normal downfield positions. 
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2.6.3. Selective NMR methods 

Selective NMR is a back to the future idea revived from the early days of protein NMR. 

Although selective experiments have been largely outdated in protein NMR by modern 

multidimensional pulse sequences, the technique is appropriate for targeted metabolic studies. 

Selective NMR works by carefully sculpting the excitation pulse to cover a narrow bandwidth. 

This, in combination with other sequences such as TOCSY, allows individual spin systems to be 

isolated from amazingly complex mixtures (Fig. 2.8). Similarly, the technique can be used to 

selectively remove overpowering resonances from a spectrum. Dan Rafteryôs group first 

introduced the idea to the metabolomics community by showing that signals from minor 

components of honey could be accurately isolated and quantified without being influenced by 

the large glucose and fructose signals (Sandusky and Raftery 2005). One of the most powerful 

aspects of the selective TOCSY is that data can be collected very quickly (~1 min per 

spectrum). For studies requiring accurate quantification of a few metabolites in complex 

mixtures, this is one of the fastest NMR techniques available. 

One must keep a few practical considerations in mind when using selective pulse 

sequences. Selective experiments require hand tuning of the excitation pulse, and this tuning 

may change from sample to sample if the target metabolite is subject to chemical shift variation. 

Secondly, selective experiments lose their time advantage in studies involving multiple 

metabolites. After the number of target metabolites reaches about ten, then a full 2D 1H-1H 

TOCSY or 1H-13C HSQC are more efficient and do not require hand manipulation of the pulses 

between experiments. However, if a study only calls for analysis of a few molecules, then 

selective TOCSY is one of the best tools for the job.  
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Figure 2.8. (A) Selective 1D 1H-1H TOCSY for lactate in live red blood cells. (B) Standard 1D 1H 

NMR spectrum of the same sample. Cells were labeled with [U-13C]-glucose, the triplet-like 

splitting observed in the TOCSY arises from [U-12C]-lactate (center peak) and fully labeled [U-

13C]-lactate (two satellite peaks).  
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2.7. Future prospects  

Technological advances of recent years have dramatically increased the efficiency with 

which metabolites can be identified and accurately quantified. High quality empirical libraries, 

bioinformatics-based spectral assignment tools, improved analytical software, and practical 

methods for identifying and quantifying NMR and MS signals in complex spectra have taken the 

field a step closer to the automation enjoyed by mainstream bioanalytical methods. Despite 

these advances, bioanalytical metabolomics is still in its early development and is far from 

capitalizing fully on state-of-the-art NMR and MS technology. A significant proportion of signals 

in every study go unassigned, bioinformatics tools suffer from unacceptable false discovery 

rates, quantification requires ad hoc correction of quantitatively unreliable data, and specialized 

expertise is required to collect, analyze, and interpret data. Finding practical solutions to these 

problems is paramount to bioanalytical metabolomics and is a promising area for future 

technology development. 
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CHAPTER 3 

New Bioinformatics Resources for Metabolomics 

 

Adapted from: 

John L. Markley, Mark E. Anderson, Qiu Cui, Hamid R. Eghbalnia, Ian A. Lewis, Adrian D. 

Hegeman, Jing Li, Christopher F. Schulte, Michael R. Sussman, William M. Westler, Eldon L. 

Ulrich, and Zsolt Zolnai. New Bioinformatics Resources for Metabolomics. Pacific Symposium 

on Biocomputing, World Scientific Press: 157-168 (2007).  

and 

Qiu Cui, Ian A. Lewis, Adrian D. Hegeman, Mark E. Anderson, Jing Li, Christopher F. Schulte, 

William M. Westler, Hamid R. Eghbalnia, Michael R. Sussman, and John L. Markley. Metabolite 

identification via the Madison Metabolomics Consortium Database. Nature Biotechnology, 

26,162 (2008)  

 

This chapter documents two bioinformatics resources that are essential to bioanalytical 

metabolomics. Prior to these tools, identifying metabolites required months of data analysis and 

considerable NMR expertise. These resources made metabolite identification an efficient semi-

automated procedure. Developing these tools required the coordinated efforts of many people; 

my contributions included designing the standardized solution conditions, selection of the 

metabolite standards, some of the early data collection and sample preparation, assistance with 

the design of database and bioinformatics tools, and beta testing. I also wrote the two papers 

published on this topic and conducted the statistical analyses presented in these publications.   
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3.1. Abstract 

We have developed two freely available databases as resources for the metabolomics 

community. These tools simplify metabolite identification in MS- and NMR-based studies. The 

first database, a metabolomics extension to the BioMagResBank (BMRB, www.bmrb.wisc.edu), 

contains peak lists and NMR spectra of over 800 pure compounds.2 These data allow tentative 

NMR assignments to be compared with metabolite standards prepared under controlled 

conditions. The second database, the Madison Metabolomics Consortium Database (MMCD, 

http://mmcd.nmrfam.wisc.edu), contains extensive bioinformatics tools for identifying 

metabolites in experimental MS and/or NMR data. We introduce these tools and discuss their 

utility to metabolomics.  

3.2. Introduction  

High-throughput metabolic profiling, known as metabolomics (Mendes 2002) or 

metabonomics (Nicholson, Lindon et al. 1999), has been an active area of research for over 35 

years (Pauling, Robinson et al. 1971). Mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) are the primary analytical techniques used for metabolomics (Fiehn 2002; 

Nicholson, Connelly et al. 2002). Despite the routine use of these tools, determining the 

molecular composition of mixtures remains a major analytical challenge. One reason for this 

difficulty is a lack of publicly available tools for comparing experimental data with the existing 

literature on the masses and chemical shifts of common metabolites.  

To simplify metabolite identification in complex mixtures, we have two databases of 

biologically relevant small molecules: 1) a metabolomics extension to the existing Biological 

Magnetic Resonance Data Bank (BioMagResBank, BMRB) and 2) the Madison Metabolomics 

                                                 
2 Data collection efforts are ongoing; this figure is current as of March, 2010.  



49 

 

Consortium Database (MMCD). The BMRB database (http://www.bmrb.wisc.edu) contains 

experimental NMR data from over 800 pure compounds whereas the MMCD 

(http://mmcd.nmrfam.wisc.edu) contains a collection of bioinformatics tools for assigning MS 

and NMR spectra.  

3.3. Metabolite Database at the BMRB  

Overview. The metabolomics community would clearly benefit from an extensive, freely-

accessible spectral library of metabolite standards collected under standardized conditions. Our 

chief complains with the existing resources are that they either 1) do not contain the original 

spectral data (Sadtler 1967; Steinbeck, Krause et al. 2003) 2) contain data that were collected 

under non-standardized conditions (Steinbeck, Krause et al. 2003) or 3) do not make their data 

freely available (AMIX/SBASE http://bruker-biospin.de). To the best of our knowledge, the 

Human Metabolome Project (http://www.hmdb.ca/) is the only resource that does not suffer from 

any of these problems. The deficiency of NMR resources results partially from the prohibitive 

expense and time expenditure necessary to compile a comprehensive library of biologically 

relevant small molecules under standardized conditions. Our solution is to provide a well-

defined, curated platform that will allow the deposition of data from multiple research groups and 

free access to all.  

Rationale for Metabolomics at BMRB. The BMRB is a logical host for a metabolomics 

spectral library because of its history as a worldwide repository for biological macromolecule 

NMR data (Ulrich, Markley et al. 1989; Seavey, Farr et al. 1991; Doreleijers, Mading et al. 

2003). The BMRB is a public domain service and is a member of the World Wide Protein Data 

Bank. Along with its home office in Madison, Wisconsin, the BMRB website has mirror sites in 

Osaka, Japan and Florence, Italy. BMRB is funded by the National Library of Medicine and its 

activities are monitored by an international advisory board. BMRB data is well archived with 

daily onsite tape backups and offsite third party data backup.  
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Data Collection and Organization. Currently, the BMRB metabolomics archive contains 

experimental NMR data for more than 800 compounds collected by the Madison Metabolomics 

Consortium. Entries contain time-domain NMR data, peak lists, processed spectra, and data 

acquisition and processing files for one-dimensional (1H, 13C, 13C DEPT 90o, and 13C DEPT 

135o) and two-dimensional (1H-1H TOCSY and 1H-13C HSQC) NMR experiments. 

Each BMRB metabolite entry represents a set of experimental and theoretical data reported 

for a metabolite. Entries are assigned a unique identifier and metadata describing the 

compound, experimental details, and quantitative data are archived in NMR-STAR formatted 

text files (Hall 1991; Hall and Spadaccini 1994; Hall and Cook 1995). Data are stored on the 

BMRB ftp site (ftp://ftp.bmrb.wisc.edu/pub/metabolomics) with directories defined by each 

compound. Subdirectories for NMR, MS, and literature data are listed for each compound 

directory. Data for compounds that form racemic mixtures in solution (e.g. glucose) are grouped 

under a generic compound name.  

Presentation and Website Design. The BMRB metabolomics website has been developed 

to meet needs expressed by many of its users. The layout and usage of the metabolomics web 

pages have had several public incarnations and will probably undergo more as the site matures 

and grows. The first page a visitor sees contains a two-paragraph introduction to the field and a 

collection of Internet links to a few important small molecule sites with a more complete listing of 

metabolomics websites at the side of the page. The information contained in these websites and 

databases is complementary to that collected by BMRB. The Standard Compounds page 

(Fig. 3.1) provides the means for searching for metabolites of interest. 

For each compound archived, an individual summary page (Fig. 3.2) is created dynamically 

from the collection of files located in the standard substance sub-directory associated with that 

compound. A basic chemical description (nomenclature, formula, synonym list) is provided from 



51 

 

information collected from PubChem (http://www.ncbi.nlm.nih.gov/) and a two-dimensional stick 

drawing is created. Three-dimensional ó.molô files are generated from the two dimensional ó.sdfô 

files obtained from PubChem, and these are displayed using Jmol. Links are created to one or 

more PubChem entries and to the corresponding KEGG entry. Synonym information and 

various nomenclature descriptions such as INChI codes, IUPAC names, and SMILES strings 

are given. 
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Figure 3.1. (Above) Metabolomics standards page on the BMRB website and (below) a portion 

of a metabolite summary page for N-acetyl-D-glucosamine-6-phosphate.  
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The dynamic user interface at the BMRB allows us to create tools that search through the 

data or calculate answers according to specific user input. NMR data can be displayed in a 

variety of ways: as a collection of spectra, as a spectrum along with its peak list, or simply a 

single spectrum of interest. Links allow the user to access the time-domain or processed data 

by FTP. The Peak Query tool allows the user to enter a list of peaks in one- or two-dimensional 

formats with tolerances and retrieve a list of compounds with matching signals. 

Metabolites often have a variety of synonyms. The BMRB allows records to be located by 

common names, INChI codes, IUPAC names, SMILES strings, and various database IDs. The 

BMRB also supports selective searches. Users wishing to see all entries for molecules 

containing nitrogen, for example, can search chemical formulas by óNô. Molecules with similar 

substructures can be located using INChI or SMILES searches.  

Prospects. Over the past year, the BMRB has acquired a collection of high-quality NMR 

data of metabolite standards and has developed a platform for distributed these data to the 

public. This resource will continue to expand as additional datasets are deposited. Currently, all 

of the BMRB data has been contributed by the Madison Metabolomics consortium. However, we 

are actively soliciting datasets from the community and encourage users to provide feedback on 

the BMRB interface. Several users have requested that the BMRB data be made available 

through bulk transactions. We have accommodated this request by collating data from the ftp 

repository into a collection of tar (tape archive) files that can be easily downloaded. 

3.4. Madison Metabolomics Consortium Database (MMCD) 

Overview. The task of identifying metabolites present in unfractionated biological samples is 

fundamentally different from the process of identifying novel natural products. The key 

distinctions are that the molecular structures of common metabolites are already known, and 

pure small molecule standards are often commercially available. This means that many of the 
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time consuming steps required for natural product compound identification can be replaced by 

bioinformatics. Currently, metabolomics studies rely on traditional natural products-based 

methods for identifying molecules in complex biological extracts. The Madison Metabolomics 

Consortium Database (MMCD, http://mmcd.nmrfam.wisc.edu) extends the practical scope of 

metabolomics studies by replacing labor-intensive metabolite identification with efficient 

bioinformatics-based assignments.  

Data collection and organization. The MMCD contains information on over 20,000 

metabolites and other small molecules of biological interest. These molecules, which were 

chosen from entries in KEGG, BioCyc, BMRB, CHEBI, HMDB, UM-BBD, and PDB, are a 

collection of primary and secondary metabolites, xenobiotics, and common small molecule 

contaminants. A total of 459 small molecule entries contain experimental NMR data collected by 

the Madison Metabolomics Consortium (MMC) and an additional 525 compounds contain links 

to NMR data collected by the HMDB. The MMC and HMDB NMR data have 234 compounds in 

common.3 Although the HMDB and MMC collect data under different conditions (MMC: 99.9% 

D2O containing 50 mM phosphate buffer pH 7.4; HMDB: H2O, 50mM phosphate, pH 7.0), the 

chemical shifts of the two datasets are in good general agreement with an average 1H chemical 

shift variation of 0.05 ppm and 0.15 ppm variation for 13C chemical shifts.  

The MMCD is more than a data repository; it is equipped with a flexible and efficient query 

system that supports complex queries from any combination of its five basic search engines 

(text, structure, NMR, mass, and miscellanea). Search results provide users with all of the 

MMCD information about a molecule and direct links to related records in other public 

databases. 

                                                 
3 The metabolites numbers in the MMCD and HMDB quoted here reflect 2008 levels. 
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Text-based searches. The MMCD has an efficient text-based search feature that allows 

users to locate metabolites by name or by the ID numbers used by other public databases (eg. 

KEGG and CAS). This search feature supports ambiguous and wildcard matches and will return 

possible alternatives in cases of misspelled names. An extensive synonyms list supports 

multiple molecular naming conventions. Queries can be typed into the graphical user interface, 

or files can be uploaded for batch searching.  

Structure-based searches. The MMCD allows records to be located on the basis of 

molecular formula, average mass, SMILES (Simplified Molecular Input Line Entry System) 

(Weininger, Weininger et al. 1989) string, INCHI (International Chemical Identifiers; 

http://www.iupac.org/inchi/) string, or common structure files (eg. .mol and .pdb). Alternatively, 

structure can be drawn directly into a molecular graphics window. Users can combine as many 

as six structural criteria in logical and/or/not fashion to further refine the search and can use 

controllable similarity thresholds to search for substructures, stereoisomers, or related covalent 

structures. 

NMR-based searches. This feature allows users to upload experimental NMR data to the 

MMCD for metabolite identification. NMR-based searches give users considerable flexibility with 

regard to the type and quality of data entered. Chemical shifts can be combined with filters that 

search for complex multinuclear spin topologies. For example, users can specify chemical shift 

or atom connectivities (e.g., number of hydrogens attached to a carbon atom). Batch-mode 

searches return probabilistic identifications of metabolites in mixtures on the basis of various 

types of NMR data: 1D-1H, 1D-13C, 2D-1H-13C HSQC, 2D-1H-13C HMBC, and 2D-HSQC-

TOCSY. Peak lists can be typed in manually, or files can be uploaded in the variety of formats 

used by NMR spectroscopists. NMR searches can use any one of MMCDôs three chemical shift 

databases: experimental (preferred default), empirically predicted from structure (most 

extensive), or quantum chemical calculated (of interest to theoreticians and useful for quality 
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control and assignment of experimental data). Search results can be downloaded as a tab-

delimited file (Excel type) or viewed directly in the MMCD interface. NMR data and structural 

information have been seamlessly integrated into the search engine. The search engine makes 

full use of chemical shift, J-coupling, and structure- related information, such as connectivity 

(atom neighbors). The search engine automatically handles issues related to differences in 

NMR field strength by storing chemical shifts, J-couplings, peak intensities, and 

concentration/intensity ratios in a field-independent manner. The NMR search engine 

reconstructs these parameters at the field strength of the data submitted by the user. Thus, 

qualitative analyses can be carried out using data from any NMR filed strength.  

As a test of the NMR search engine for qualitative analyses, we used the MMCD to identify 

metabolites in 1H-13C HSQC spectra of complex mixtures pure compounds comprising, in total, 

54 metabolites. These compounds were intentionally selected from the MMCD archives to 

ensure that sensitivity (correctly identified compounds) and false discovery (incorrectly identified 

compounds) estimates were restricted to the databaseôs peak matching performance. Under 

these controlled conditions, automated MMCD compound identification averaged 95% 

sensitivity and 4% false discovery under the default tolerances.  

We are aware that identifying compounds in spectra of biological extracts is complicated by 

signals from compounds not in the database and by variation in the positions of NMR peak 

caused by small variations in salt concentration and pH. To evaluate the MMCD performance on 

biological samples, we analyzed 1H-13C HSQC spectra of Arabidopsis, Medicago and 

Saccharomyces extracts that had been assigned by hand (Lewis, Schommer et al. 2007). The 

divergence of the two assignment lists showed MMCD sensitivity to range from 45 to 65% and 

its false discovery rate ranges from 0 to 18% when applied to spectra of biological extracts. Like 

the analysis of the standards mixtures, these sensitivity and false discovery estimates were 

restricted to compounds known to be present in the database and thus reflect the search 
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engineôs capability rather than the extent of the database. The MMCD NMR-based mixture 

identification tool responds in the expected manner to changes in the default tolerances (the 

MMCD uses two tolerances, one controls allowable chemical shift variation and the other 

controls the number peaks from each molecule that must be correctly matched to classify a 

compound as identified; the default tolerances are ° 0.05 ppm chemical shift variation for both 

1H and 13C and an 80% peak matching threshold). Loosening the default tolerances increases 

sensitivity and false discovery whereas tightening the tolerances decreases false discovery at 

the expense of sensitivity (Fig. 3.2). Regardless of the search tolerances, automatic 

identifications should always be hand-verified by overlaying spectra of pure standards over the 

experimental spectrum (Lewis, Schommer et al. 2007). 
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Figure 3.2. Sensitivity and false discovery rates of the MMCD for batch analysis of mixtures 

using 1H-13C HSQC NMR data as a function of the user-controllable peak matching thresholds. 

The metabolite mixtures used in this analysis were prepared from pure compounds under the 

standard MMCD conditions (50 mM phosphate buffer; 99.9% D2O; pH 7.40, glass electrode 

reading). Sensitivity (number of correct ID / actual composition) and false discovery (number of 

incorrect IDs / total metabolites returned) rates were determined as a function of the user 

definable 1H and 13C chemical shift tolerances and peak match thresholds (the peak matching 

threshold defines the number of peaks, as a percentage, that must be observed in the 

experimental data for a metabolite to be counted as an positive identification). As expected, 

tightening the chemical shift and peak matching tolerances decreased false discovery and 

reduced sensitivity. Conversely, loosening the default thresholds increased both sensitivity and 

false discovery.  
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Figure 3.3. (a) Distribution of monoisotopic masses (N = 19,711) in the MMCD and (b) the 

average number of metabolites returned from a monoisotopic mass query as a function of mass 

and mass accuracy at 0 ppm, 5 ppm, and 10 ppm mass accuracy. Results were smoothed to 

determine the average number of matches across a mass range of 25 ppm.  

 

  






















































































































































































































































































































